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Abstract
Expert system has played an important role in human’s 

life for a long time. In order to establish an expert system, 
knowledge acquisition is the process which should be 
considered first. Regarding to this step, two of the most 
demanding requests are: how to discover the knowledge 
from a massive dataset, and how to organize them in a 
temporary database properly in order to be reviewed
again. In this paper, we propose a design of a subsystem,
which acquires the knowledge from Big Data sources and 
stores them following the rule form. Our work is 
conducted with the support of a data mining technique 
called association rules mining, which is executed through 
parallel distributed environments: given data under file 
form as input, outputs which includes rules representing 
knowledge with their corresponding certainty factor are 
gotten. Then all of these rules are stored in a relational 
database, which could be queried out by knowledge 
engineers to review them again before encoding them into 
the knowledge base. By the experiments with real dataset, 
it is confirmed that our proposed design could not only 
acquire the knowledge from Big Data source in an 
acceptable duration, but also handle well with the 
querying out situation when a lot of rules are gotten. 
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I. Introduction

Expert systems [1] have attracted much attention in recent 
decades. In the processes for establishing these systems,
knowledge acquisition subsystem plays a very important role: 
it has the responsibility for acquiring knowledge from many 
sources, then structuring and letting them to be rechecked 
before encoding them into the knowledge base. The most 
efficient source of data for acquiring the knowledge is from 
human expert [7], which is supposed to cost not only much 
time, but also money. Consequently, expert system maker 
would want some alternative solutions which could acquire the 
knowledge automatically without much cost like the human 
expert source.  

There have been a lot of researches regarding automating 
orientation. Herskovits et al [8] proposed calculating entropy 
value from the inputted database of cases to produce a belief 
network. Leung et al [9] employed association rules mining in 
incomplete information system. Those methods were proved to 

be efficient years ago, but they could not be satisfying when 
dealing with big volume data issue at this time.  

Association rules mining has been used for acquiring 
knowledge for a long time. The original work of this technique 
was from the shopping baskets of the retainers: giving a
collection of transactions with their corresponding purchased 
items, mining association rules is finding which items 
customers could pick; which are considered as consequent; 
after grabbing some ones known as antecedent. This mining 
could only be conducted after the prior work is done: finding 
the frequent itemsets; which are the set of items accompanying 
together whose rate of appearances over the overall number of 
transactions (a.k.a support) is larger than a given threshold 
(which is also known as minimum support). 

In this paper, we propose a design of knowledge acquisition 
subsystem for expert system by using association rules mining, 
which could be applied specifically on big dataset. Our work is 
executed in 3 main processes. The first one is Raw Big Data 
Processing, which will handle the raw data to get the so-called
transactions with their corresponding items. Afterward, the 
association rules mining process will initially, with the input 
minimum support, find all the frequent itemsets, which is the 
basement for finding association rules. Finally, those results 
will be stored by the rules Database, with a proper design 
satisfying the possible large quantity exploding in the future. 
By this proposed database, users can query and verify rules’
validity before applying them in their expert system. 

II. Background

A. Expert System 
Expert System is a kind of system which is used to support 

making up decisions on some specific domains based on 
human knowledge, which is discovered in the real life from 
human experts or real data exploration. Fig. 1 describes an 
Expert System architecture, which includes some components. 
They could be more or fewer in other variants, but Fig. 1 is one 
of the most typical one. In this architecture, the Knowledge 
Acquisition subsystem gets the responsibility to accumulate 
knowledge from Real Life Data or Human Experts. Afterwards, 
knowledge is verified before being encoded into the 
Knowledge Base. Users will interact with the Expert System 
by sending requests to the component called User Interface. 
From here, based on the knowledge accumulated in the 
Knowledge Base component, the Inference component will try 
to find the best suggestion for the requests from users and the 
Explanation Component will explain why that suggestion is 
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chosen. 

 
Fig. 1 Architecture of a typical Expert System 

B. Association rules mining 
In this technique, two entities should be considered: a set of 

items I = {I1, I2…, In} and a collection of transaction T = {T1,
T2…, Tn} with each of them contains (some) independent 
item(s). Mining the association rules includes 2 main tasks: 
frequent itemsets finding and association rules finding. The 
aim of the former is trying to get all the set of items whose rate 
of appearance (support) is larger than a given threshold, which 
is called minimum support (minsup). In order to do this work, 
one of the most well-known methods is Apriori algorithm [2], 
which employs a pruning technique to solve the problem. In 
any levels of itemset length, it will find all the possible sets 
which satisfy the minimum support requirements. 
Subsequently, in the next levels, the itemsets, whose length is 
1-longer than the previous level’s length, will have to contain 
all subsets being the found frequent itemsets previously. 
Apriori algorithm is very useful in the old days when parallel 
computation [3] was not popular. However, it is not suitable 
anymore those days because Apriori can only be conducted on 
a single machine environment only.  

 SON algorithm [4] described in Algorithm 1 is supposed to 
work well on parallel environment because in the first pass it
divides the dataset into smaller non-overlapping fragments, 
then sequentially on each of them finds the local frequent 
itemsets, which will be aggregated together to become the 
global frequent itemset candidates. In the next pass, these 
found candidates are considered on the whole dataset to find 
their overall appearances, which are used to decide if these
candidates are really frequent or not. Our work applies the 
SON algorithm not on a single machine, but in a parallel 
environment, specifically Hadoop [5]. 

After that, the association rules finding will continue the 
work based on what has been found. Consider a frequent 
itemset l and one of its subset a, the so-called confidence value 
of any rule is calculated by: 

If the confidence value of any rule is larger than a given 
threshold, this rule is considered as association rule. 

Algorithm 1: SON algorithm 

Input: Set of items I = {I1, I2, …, In};

collection of transaction T= {ti , ti c I }; 

minimum support threshold minsup.

Output: itemsets whose support is larger than minsup
1. Dividing T into m parts
2. Initialize local_sets ← null; global_sets ← null

// local_sets: global frequent itemset candidates
// first passing

3. for i ← 1 to m
4. temp_local_sets←get_frequent_itemsets(i)
5. local_sets.add(temp_local_sets)

//second passing
6. for i ← 1 to m
7. part = get_part(T , i)
8. for j ← 1 to local_sets.length()
9. local_sets[j].quantity  ← local_sets[j].quantity +

get_quantity(part , local_sets[j])

10. for i ← 1 to local_sets.length()
11. current_set ← local_sets[i]
12. support ←  current_set.quantity() / T.length() 
13. if (support > minsup )
14. global_sets.add(current_set)
15. return global_sets

 
Fig. 2 Big Data Platform for pre-processing and mining the rules 

III. Design of Knowledge Acquisition subsystem 

A. Overview of our knowledge acquisition subsystem on Big 
Data platform 

Our knowledge acquisition system uses 3 main processes for 
acquiring knowledge. Initially, the data from file source is 
pre-processed to get the transaction form with their items 
accompanying together. Afterwards, those transactions data 
will be handled to find the frequent itemsets first, which will be 
the basement for finding the association rules. Finally, these 
rules will be stored in the relational database. 

In order to conduct these processes, we employ a Big Data 
platform which has been introduced in our research before [6]. 
Fig. 2 describes our design of knowledge acquisition 
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subsystem on this platform, which is created on the basis of 
Hadoop and modified from [6] to satisfy the aim of finding 
knowledge. 

This subsystem will get the raw data from External Services, 
Sensors as well as Internal Data like csv, xls files. Those data, 
after being some basic processes, will be stored in Hadoop 
distributed file system (HDFS) with the support of a
component called MapReduce, which divides the whole 
dataset into smaller parts, then execute on each of them. 
Subsequently, pre-processing phase is conducted by 
MapReduce component, which stores the transactions data in 
HDFS. Then, the association rules mining phase will be 
executed by the association rules mining component inside 
Data Analysis, which reads the data from this storage and runs 
the SON algorithm in the parallel environment to get the 
results. Finally, they will be stored in MySQL database. 

B. Raw Big Data Pre-processing
The aim of this component is getting the data, which is the 

form of transactions with corresponding items accompanying 
together, to mine the association rules. In the scope of this 
paper, the input data is limited to file form, which contains data 
about some domains whose knowledge is needed to be 
extracted. Each input file has many rows, which stand for the 
accumulated data. By manually analyzing the input data, 
(some) field(s) can be possibly found, which could establish 
unique objects with unique identities representing for unique 
transactions. Afterwards, among other fields, one can be 
picked to make the items data for each transaction. These fields 
can be considered as transaction fields and item field 
respectively. In section V, we include an example with real 
dataset for getting the transaction data.

With the support of MapReduce, this work can be done 
parallelly. The raw big data, after being stored in HDFS by 
MapReduce, can be split into some smaller parts.  Based on the 
knowledge of the executor, the fields chosen for making 
transaction identity and item name will be set. The first map 
procedure will produce the pair <key, value> whose key is 
gotten from transaction fields, and value is gotten from item 
field. After the reduce procedure, all the item will be grouped 
together with the same key, making the list of transactions with 
corresponding items. The final result of this component is 
stored in HDFS, which allows the next component to read and 
process with MapReduce procedure. 

C. Association rules mining 
As mentioned before, our method is conducted based on 

SON algorithm on the parallel computing environment with 
Hadoop. In order to conduct this work, there should be 2 
phases of MapReduce to handle 2 passes of the SON 
algorithm. 

In the first phase, the overall gotten list of transactions is 
divided into many smaller non-overlapping parts, which are 
handled by some mappers to find the local frequent itemsets on 
each smaller part. This procedure’s output has the form <key, 
value> whose key is the item’s name and value is 0 because 
this phase is just used for finding the possible frequent 
candidate, so its number of appearances need not to be 
considered. After being processed by the reducer, the overall 
global frequent itemset candidates are gotten. 

Afterward, in the second MapReduce procedure, the list of 
global frequent itemset candidates is employed, which is 

assigned for each mapper. After the map procedure, the 
appearances of each itemset of global frequent itemset 
candidates on each smaller part will be gotten first, then after 
the reduce phase, their overall appearances over the whole 
dataset will be achieved. Based on this overall achievement, 
the support of each global frequent itemset candidates can be 
calculated, which decides which itemsets are frequent or not. 

Finally, in order to accomplish the task of mining 
association rules, based on the found frequent itemsets, the 
rules will be gotten by calculating their confidence. In this step, 
we follow the work mentioned in [4]: generating subset of each 
frequent itemsets by each level of subset length decreasing. If 
any rules containing (a) as antecedent and (l - a) as consequent 
could not satisfy the minimum confidence requirement, all the 
rules containing a’s subset asubset as antecedent and (l - asubset)
as consequent will be discarded without considering. 

 
Fig. 3 Design of MySQL Database for storing association rules 

D. Storing the archived rules in MySQL database
After getting all the association rules from the dataset, these 

rules will be stored in the database. Specifically, we employ a 
relational database known as MySQL. The design of the 
database for storing achieved rules is described in Fig. 3.

As seen from Fig. 3, there are 3 tables to store the rules’ 
information. The first one is association_rules which stores 
raw rule’s content raw_rule (the string format of the rules: 
antecedent  consequent), number of items in the consequent 
conse_quanti, number of items in the antecedent ante_quanti
and rule’s confidence level level, which means the confidence 
of the found rule. The other tables are antecedent and 
consequent, which stores each individual item of antecedent 
and consequent of the rules. In each rule, there could be some 
items in the antecedent and some items in the consequent. 

Because those rules will be later queried again to be 
reviewed and inserted into the knowledge base, we create a 
design which supports mainly for querying based on the 
chosen items in the antecedent as well as consequent. With the 
support of indexing function from MySQL, it would take users 
less time for querying the wanted results, even when the 
number of gotten rules explodes later. 

V. Evaluation 

We conducted our evaluation with a Hadoop cluster on 5 
machines: one for master node and 4 for computing nodes. 
Each machine has 4 CPU and 16 GB of RAM. The data set 
used for testing is taken from agriculture data in Korea in 2015. 
In this dataset, there are many rows, each of which have farms 
information like their identity number, their grown products,
their grown area and income. Because a specific farm with a 
unique identity number could have many grown products, 
there could be many rows with the same identity number, but 
different grown product. Consequently, farms’ identity 
number and grown products are chosen as transaction field and 
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item field respectively. Moreover, in order to increase the 
quality of the gotten rules, we only get the transactions from 
farm whose income is larger than 10,000 thousand won. This 
filter proves that the gotten rules are retrieved from good 
sources. 

Table 1: Evaluating for the pre-processing 
Number 

of records
Number of 

gotten 
transactions

(with income 
condition)

Number of 
gotten 

transactions
(without 
income 

condition)

Executed 
time (s)
(with 

condition /
without 

condition)
4,053,802 281,055 419,569 31/24
6,082,807 390,125 642,614 33/28
8,110,107 489,678 909,954 35/32

10,100,124 566,257 1,261,391 38/36
11,275,355 614,736 1,561,632 42/39

The first evaluation is conducted with pre-processing data. 
The results for this evaluation is shown in Table 1. As seen 
from this table, the executed time also increases when the 
number of records increases. However, the increasing of 
executed time is marginal: from 24 to 39 seconds without the 
income condition, and from 31 to 42 seconds with the income 
condition, while inputted records quantity is nearly doubled.  

 
Fig. 4 Comparison between Brute algorithm and SON algorithm 

conducted on Hadoop environment 

Subsequently, another evaluation is made with the frequent 
itemset finding phase, by comparing with an original method 
called Brute-Force. In this one, each possible itemset is listed, 
then their appearances are counted by looking at each 
transaction. Both of our method and the original method are 
conducted on proposed Hadoop environment. The result is 
shown in Fig. 4. From this figure, it is observable that the 
execution time of our method is always much lower than the 
original method when the number of transactions increases. 
The minimum support used for this case is 0.1. 

Finally, the last evaluation is conducted with the queried 
time when a search function is made. It is assumed that a user 
wants to search some rules, and he will input some items, so 
the result he wants are some rules which includes his chosen 
items as antecedent. This evaluation is conducted with the 
number of items in the antecedent increases, and nearly 

300,000 gotten rules. As seen from Fig. 5, which is the result of 
this evaluation, when the number of chosen items in the 
antecedent increases, the queried time increase mildly, which 
proves that our design of the database for storing the gotten 
rules works properly. 

 
Fig. 5 Queried time of rules searching 

VI. Conclusion 
In this paper, we have presented a design for the knowledge 

acquisition subsystem, which is used for accumulating rules 
for expert system. The raw big data is pre-processed to get the 
data under transactions form with corresponding items; then 
from this gotten data, association rules are gotten, which later 
are stored in relation database with a proper design. Our future 
work will focus on improving the performance for finding the 
rules more quickly. 
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